
Car plates identi�cation and recognizition

Institute for Research and Applications of Fuzzy Modeling

University of Ostrava

Ostrava, Czech Republic

IRAFM ALPR 1 / 32

Object matching and recognition

Outline

1 Object matching and recognition

2 Searching / matching algorithm

3 Developing general matching algorithm

4 Instance of the framework for 2-dimensional pattern matching

5 ALPR

IRAFM ALPR 2 / 32

Object matching and recognition

How it works?

An object matching and recognition is a process of assign one, or
more labels of known ones.

The labels are assigned on the basis of attributes. The attributes are
available for the database of known objects and for the unknown
object.

The process of connecting attributes with labels is called learning.
The process of assigning labels to unknown objects is called
classi�cation.

IRAFM ALPR 3 / 32

Object matching and recognition

How the attributes can be extracted?

1 The data are attributes it-selves

2 The attributes are de�ned by a human

3 The attributes are automatically extracted

IRAFM ALPR 4 / 32

Searching / matching algorithm

Outline

1 Object matching and recognition

2 Searching / matching algorithm

3 Developing general matching algorithm

4 Instance of the framework for 2-dimensional pattern matching

5 ALPR

IRAFM ALPR 5 / 32

Searching / matching algorithm

What is it?

Let us suppose f : D → R, where D ⊂ Rr, r ≥ 1

Database (haystack): IDat = {f1, f2, . . .}

Pattern (needle): fp, such that fp is full coincidence, or proper inclusion
of one, or several fi from IDat.

IRAFM ALPR 6 / 32

Searching / matching algorithm

Current state

All cases are already solved (somehow)...

BUT

"... problems are faster methods for general convolutions,

multidimensional extensions that are dimension-independent..."

A. Amir, Multidimensional pattern matching: A survey

HOWEVER

One method is universal: brute force (naive approach).

UNFORTUNATELY

Brute force is really slow.

IRAFM ALPR 7 / 32

Searching / matching algorithm

Current state

All cases are already solved (somehow)...

BUT

"... problems are faster methods for general convolutions,

multidimensional extensions that are dimension-independent..."

A. Amir, Multidimensional pattern matching: A survey

HOWEVER

One method is universal: brute force (naive approach).

UNFORTUNATELY

Brute force is really slow.

IRAFM ALPR 7 / 32

Searching / matching algorithm

Current state

All cases are already solved (somehow)...

BUT

"... problems are faster methods for general convolutions,

multidimensional extensions that are dimension-independent..."

A. Amir, Multidimensional pattern matching: A survey

HOWEVER

One method is universal: brute force (naive approach).

UNFORTUNATELY

Brute force is really slow.

IRAFM ALPR 7 / 32

Searching / matching algorithm

Current state

All cases are already solved (somehow)...

BUT

"... problems are faster methods for general convolutions,

multidimensional extensions that are dimension-independent..."

A. Amir, Multidimensional pattern matching: A survey

HOWEVER

One method is universal: brute force (naive approach).

UNFORTUNATELY

Brute force is really slow.

IRAFM ALPR 7 / 32

Developing general matching algorithm

Outline

1 Object matching and recognition

2 Searching / matching algorithm

3 Developing general matching algorithm

4 Instance of the framework for 2-dimensional pattern matching

5 ALPR

IRAFM ALPR 8 / 32

Developing general matching algorithm

Brute force

Let us recall, f : D → R, where D ⊂ Rr, r ≥ 1.

We consider a database IDat = {f1, f2, . . .} and a pattern fp, such that
fp is full coincidence, or proper inclusion of one, or several fi from IDat.

Goal: found fp in fi ∈ IDat on position x = (x1, x2, ..., xr) where
mini,x(Dist(fi, fp,x)) is achieved.

The complexity of searching fp in some fi is O(|Di| · |Dp| − |Dp|) for all
the best, average and the worst cases.

IRAFM ALPR 9 / 32

Developing general matching algorithm

General algorithm

Preserve complexity O(|Di| · |Dp| − |Dp|).

WHY?

Apply transformation Dp → D′p and Di → D′i where |D′p| < |Dp| and
|D′i| < |Di|. This leads to T (|D′i| · |D′p| − |D′p|)� T (|Di| · |Dp| − |Dp|),
Where T represents function computes execution time.

Main idea:

Apply the F-transform to the pattern and database.

Obtain their reduced representations.

Compare the objects by computing distances between components.

Choose the corresponding database record(s).

IRAFM ALPR 10 / 32

Developing general matching algorithm

General algorithm

Preserve complexity O(|Di| · |Dp| − |Dp|).

WHY?

Apply transformation Dp → D′p and Di → D′i where |D′p| < |Dp| and
|D′i| < |Di|. This leads to T (|D′i| · |D′p| − |D′p|)� T (|Di| · |Dp| − |Dp|),
Where T represents function computes execution time.

Main idea:

Apply the F-transform to the pattern and database.

Obtain their reduced representations.

Compare the objects by computing distances between components.

Choose the corresponding database record(s).

IRAFM ALPR 10 / 32

Developing general matching algorithm

General algorithm

Preserve complexity O(|Di| · |Dp| − |Dp|).

WHY?

Apply transformation Dp → D′p and Di → D′i where |D′p| < |Dp| and
|D′i| < |Di|. This leads to T (|D′i| · |D′p| − |D′p|)� T (|Di| · |Dp| − |Dp|),
Where T represents function computes execution time.

Main idea:

Apply the F-transform to the pattern and database.

Obtain their reduced representations.

Compare the objects by computing distances between components.

Choose the corresponding database record(s).

IRAFM ALPR 10 / 32

Developing general matching algorithm

General algorithm

Preserve complexity O(|Di| · |Dp| − |Dp|).

WHY?

Apply transformation Dp → D′p and Di → D′i where |D′p| < |Dp| and
|D′i| < |Di|. This leads to T (|D′i| · |D′p| − |D′p|)� T (|Di| · |Dp| − |Dp|),
Where T represents function computes execution time.

Main idea:

Apply the F-transform to the pattern and database.

Obtain their reduced representations.

Compare the objects by computing distances between components.

Choose the corresponding database record(s).

IRAFM ALPR 10 / 32

Developing general matching algorithm

Why is it so di�cult?

IRAFM ALPR 11 / 32

Developing general matching algorithm

Preliminaries - Fuzzy transform

Let {A1
1, . . . , A

1
n1
} × {A2

1, . . . , A
2
n2
} × · · · × {Ar

1, . . . , A
r
nr
} be a fuzzy

partition of Dr and let a function f : Dr → R be known at points
(p11, . . . , p

r
1), . . . , (p

1
N , . . . , p

r
N) such that for each (k1, . . . , kr) where

kj = 1, . . . , nj and j = 1, . . . , r, there exists
i = 1, . . . , N : A1

k1
(p1i) · · ·Ar

kr
(pri) > 0.

We say that a ν-tuple Fn1n2...nr [f] = [Fk1...kr] of real numbers where
ν = (n1 · n2 . . . nr) is the discrete direct F-transform of f with respect to
the given fuzzy partition if

Fk1...kr =

∑N
i=1 f(p

1
i , . . . , p

r
i)A

1
k1
(p1i) · · ·Ar

kr
(pri)∑N

i=1A
1
k1
(p1i) · · ·Ar

kr
(pri)

for each r-tuple k1 . . . kr.

IRAFM ALPR 12 / 32

Developing general matching algorithm

Fuzzy transform and shift

IRAFM ALPR 13 / 32

Developing general matching algorithm

Algorithm design

Framework

Main idea:

Apply the F-transform to the pattern and database.

Obtain their reduced representations.

Compare the objects by computing distances between components.

Choose the corresponding database record(s).

Choosing width of fuzzy partition - as big as possible (h).

Specifying the fuzzy partition - two shifted Ruspini partitions.

Choosing the distance - Manhattan distance.

Choosing the threshold - computed from pattern components.

IRAFM ALPR 14 / 32

Instance of the framework for 2-dimensional pattern matching

Outline

1 Object matching and recognition

2 Searching / matching algorithm

3 Developing general matching algorithm

4 Instance of the framework for 2-dimensional pattern matching

5 ALPR

IRAFM ALPR 15 / 32

Instance of the framework for 2-dimensional pattern matching

2 dimensional pattern matching algorithm

Inputs | Outputs | Pre-Processing | Processing

s IDat = {f1, . . . , fd}: a database of d images

s

s fp: a pattern image

s

s H = {20, 40, . . . }: a set of values of a parameter h

IRAFM ALPR 16 / 32

Instance of the framework for 2-dimensional pattern matching

2 dimensional pattern matching algorithm

Inputs | Outputs | Pre-Processing | Processing

s i: an index of a database image

s

s x, y: coordinates in the i-th database image where the pattern fp
s was matched

s

s Disti: a distance between the pattern and the i-th database image

IRAFM ALPR 17 / 32

Instance of the framework for 2-dimensional pattern matching

2 dimensional pattern matching algorithm

Inputs | Outputs | Pre-Processing | Processing

1. for each h ∈ H
2. for each fi ∈ IDat, i = 1, . . . , d
3. Fn1i

n2i
[fi] = [Fk1ik2i

]k1i=1,...,n1i
; k2i=1,...,n2i

;

w.r.t. h-uniform fuzzy partition of [1, N1i]× [1, N2i]
4. Fn1′

i
n2′

i

[fi] = [Fk1ik2i
]k1i=1,...,n1i−1; k2i=1,...,n2i−1 ;

w.r.t. h-uniform fuzzy partition of [h/2, N1i]× [h/2, N2i]

IRAFM ALPR 18 / 32

Instance of the framework for 2-dimensional pattern matching

2 dimensional pattern matching algorithm

Inputs | Outputs | Pre-Processing | Processing

1. hp =
√
N1pN2p/15

2. choose hj ∈ H such that |hj − hp| = minh∈H |h− hp|
3. Fn1pn2p

[fp] = [Fk1pk2p]k1p=1,...,n1p ; k2p=1,...,n2p
;

w.r.t. h-uniform fuzzy partition of [1, N1i]× [1, N2i]

4. θ =
∑n1p−1

s=1

∑n2p−1

t=1 |Fsp,tp−Fs+1p,tp |+|Fsp,tp−Fsp,t+1p |
2(n1p−1)(n2p−1)

5. for each i = 1, . . . , d
6. for each x = 1, . . . , n1i − n1p
7. for each y = 1, . . . , n2i − n2p

IRAFM ALPR 19 / 32

Instance of the framework for 2-dimensional pattern matching

2 dimensional pattern matching algorithm

Inputs | Outputs | Pre-Processing | Processing

8. T xy
i ⊂ Fn1i

n2i
[fi] such that

T xy
i = [Fk1ik2i

]k1i=x,...,x+n1p−1; k2i=y,...,y+n2p−1
9. T xy

i,h/2 ⊂ Fn1′
i
n2′

i

[fi] such that

T xy
i,h/2 = [Fk1ik2i

]k1i=x,...,x+n1p−1; k2i=y,...,y+n2p−1

10. Disti(Fn1pn2p
[fp], T

xy
i) =

∑n1p

k1i=1

∑n2p

k2i=1 |Fk1pk2p − Fk1ik2i
|

11. Disti,h/2(Fn1pn2p
[fp], T

xy
i,h/2) =

∑n1p

k1i=1

∑n2p

k2i=1 |Fk1pk2p − Fk1ik2i
|

12. if Disti +Disti,h/2 < θ

then store < i, x · h, y · h,Disti +Disti,h/2 >

13. end;

14. out: stored triplet with the lowest Dist

IRAFM ALPR 20 / 32

Instance of the framework for 2-dimensional pattern matching

What is it good for?

Applications where we used the matching algorithm:

network attack detection,

ALPR,

sound recognition,

searching in large databases,

...

IRAFM ALPR 21 / 32

ALPR

Outline

1 Object matching and recognition

2 Searching / matching algorithm

3 Developing general matching algorithm

4 Instance of the framework for 2-dimensional pattern matching

5 ALPR

IRAFM ALPR 22 / 32

ALPR

ALPR

Two main steps:

1 car plate localization,

2 car plate recognition.

IRAFM ALPR 23 / 32

ALPR

Car plate searching

De�ne database

IRAFM ALPR 24 / 32

ALPR

Car plate searching

For the de�ned database, gradient magnitude image is created.
Components for those images are computed. These components are then
matched with the same-style created components of an input image.

Additional informations can be extracted:

rotation,

scale.

These informations are used in further
pre-processing.

IRAFM ALPR 25 / 32

ALPR

Car plate searching

IRAFM ALPR 26 / 32

ALPR

Car plate pre-processing

Pre-processing:

Borders detection

Background suppression

De-skew

Adaptive threshold with hysteresis

Letters extraction

IRAFM ALPR 27 / 32

ALPR

Letter recognition

The same process as in the case of plates:

1 Put letters to database

2 Compute components

3 Take unknown letter and search the closest one

Moreover, the recognized letters are added to the database automatically.

The �nal letter database consists of 28000 labelled letters.

IRAFM ALPR 28 / 32

ALPR

Performance

Nr. comparisons of letters per second performed, single core computing:

1.03M/s on notebook i5 processor

1.65M/s in desktop i7 processor

Complete images (2048×1088px) per second recognized, single core:

1.27/s on notebook i5 processor

2.08/s on desktop i7 processor

Real images, all conditions, whole European plates, x · 105 plates

approx 90 % success rate for plate localization

approx 90 % success rate for plate recognition

IRAFM ALPR 29 / 32

ALPR

Actual development

Implementation on GPU using OpenCl. Achieved 3× speed-up on
integrated Intel HD4000 graphic.

IRAFM ALPR 30 / 32

Conclusion

The general pattern matching algorithm was demonstrated.

The algorithm is as easy as possible:

1 put database images into folder,

2 run components computation,

3 take set of patterns,

4 classify!

Advantages:

simplicity

controlled precision / speed

independent on task

interpretability

IRAFM ALPR 31 / 32

Acknowledgement

Follow us on facebook.com/fuzzyOstrava

IRAFM ALPR 32 / 32

	Object matching and recognition
	Searching / matching algorithm
	Developing general matching algorithm
	Instance of the framework for 2-dimensional pattern matching
	ALPR

	anm0:
	anm1:
	anm2:

