Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Iveta Hnětynková, Marie Michenková, Martin Plešinger, Zdeněk Strakoš

> Charles University in Prague Technical University Liberec Academy of Sciences of the Czech republic, Prague

TU Liberec & Preciosa, a.s., September 2013

Six tons large real world ill-posed problem:

Solving large scale discrete ill-posed problems is frequently based upon orthogonal projections-based model reduction using Krylov subspaces, see, e.g., hybrid methods. This can be viewed as

approximation of a Riemann-Stieltjes distribution function via matching moments.

Outline

1. Problem formulation

- 2. Propagation of noise in the Golub-Kahan iterative bidiagonalization
- 3. Numerical illustration

The underlying problem is a linear algebraic system

 $Ax \approx b$

which can arise, e.g., in discretization of a Fredholm integral equation of the 1st kind

$$b(\mathbf{s})^{\mathsf{exact}} = \int K(\mathbf{s}, \mathbf{t}) x(\mathbf{t}) d\mathbf{t} \equiv \mathcal{A} x(\mathbf{t}).$$

The right-hand side b is contaminated by **noise**

$$b = b^{\text{exact}} + b^{\text{noise}}, \quad \delta_{\text{noise}} \equiv \frac{\|b^{\text{noise}}\|}{\|b^{\text{exact}}\|} \ll 1.$$

The goal is to approximate

$$x^{\mathsf{exact}} \equiv A^{\dagger} b^{\mathsf{exact}}.$$

Forward Problem

Singular value decomposition in discrete ill-posed problems

Properties (assumptions):

- matrices A, A^T, AA^T have a smoothing property;
- left singular vectors u_j of A represent increasing frequencies as j increases;
- the system $A x^{exact} = b^{exact}$ satisfies the discrete Picard condition.

Discrete Picard condition (DPC):

On average, the components $|(b^{\text{exact}}, u_j)|$ of the true right-hand side b^{exact} in the left singular subspaces of A decay faster than the singular values σ_j of A, j = 1, ..., n.

Left singular vectors of A represent a basis with increasing frequencies; reshaped right singular vectors of A (singular images) for the Gaussian blur

Using the SVD the solution of Ax = b can be written as

$$x = A^{-1}b = V\Sigma^{-1}U^{T}b = \sum_{j=1}^{N} \frac{u_{j}^{T}b}{\sigma_{j}}v_{j}.$$

Recall that $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_N$ and the exact components and the noise components behave differently,

$$x = \sum_{j=1}^{N} \frac{u_j^T b^{\text{exact}}}{\sigma_j} v_j + \sum_{j=1}^{N} \frac{u_j^T b^{\text{noise}}}{\sigma_j} v_j.$$

Outline

- 1. Problem formulation
- 2. Propagation of noise in the Golub-Kahan bidiagonalization
- 3. Numerical illustration

Krylov subspace methods are projection methods. Golub-Kahan iterative bidiagonalization (GK) of A:

Given $w_0 = 0$, $s_1 = b / \beta_1$, where $\beta_1 = ||b||$, for j = 1, 2, ... $\alpha_j w_j = A^T s_j - \beta_j w_{j-1}$, $||w_j|| = 1$, $\beta_{j+1} s_{j+1} = A w_j - \alpha_j s_j$, $||s_{j+1}|| = 1$.

 $S_k = [s_1, \ldots, s_k]$, $W_k = [w_1, \ldots, w_k]$, $S_k^T A W_k \equiv L_k$, where L_k is lower bidiagonal, S_k and W_k have orthonormal columns. GK starts with the normalized noisy right-hand side $s_1 = b / ||b||$. Consequently, vectors s_j contain information about the noise. Can this information be used to estimate the noise level?

Components of several bidiagonalization vectors s_j computed via GK with double reorthogonalization:

The first 80 spectral coefficients of the vectors s_j in the basis of the left singular vectors u_j of A:

Noise is amplified with the ratio α_k/β_{k+1} :

GK for the spectral components:

$$\begin{aligned} \alpha_1 \left(V^T w_1 \right) &= \Sigma \left(U^T s_1 \right), \\ \beta_2 \left(U^T s_2 \right) &= \Sigma \left(V^T w_1 \right) - \alpha_1 \left(U^T s_1 \right), \end{aligned}$$

and for k = 2, 3, ...

$$\alpha_k(V^T w_k) = \Sigma (U^T s_k) - \beta_k(V^T w_{k-1}),$$

$$\beta_{k+1}(U^T s_{k+1}) = \Sigma (V^T w_k) - \alpha_k(U^T s_k).$$

Since the dominance in $\Sigma(U^T s_k)$ and $(V^T w_{k-1})$ is shifted by one component, in $\alpha_k(V^T w_k) = \Sigma(U^T s_k) - \beta_k(V^T w_{k-1})$ one can not expect a significant cancelation, and therefore

$$\alpha_k \approx \beta_k.$$

Whereas $\Sigma(V^T w_k)$ and $(U^T s_k)$ do exhibit the dominance in the direction of the same components. If this dominance is strong enough, then the required orthogonality of s_{k+1} and s_k in

$$\beta_{k+1} \left(U^T s_{k+1} \right) = \Sigma \left(V^T w_k \right) - \alpha_k \left(U^T s_k \right)$$

can not be achieved without a significant cancelation, and one can expect

$$\beta_{k+1} \ll \alpha_k$$
.

Noise level estimation :

GK is closely related to the Lanczos tridiagonalization of the symmetric matrix $A A^T$ with the starting vector $s_1 = b / \beta_1$.

Spectral properties of

$$T_{k} \equiv L_{k} L_{k}^{T} = \begin{bmatrix} \alpha_{1}^{2} & \alpha_{1} \beta_{1} \\ \alpha_{1} \beta_{1} & \alpha_{2}^{2} + \beta_{2}^{2} & \cdots \\ & \ddots & \ddots & \alpha_{k-1} \beta_{k} \\ & & \alpha_{k-1} \beta_{k} & \alpha_{k}^{2} + \beta_{k}^{2} \end{bmatrix}$$

determine an approximation of the Riemann-Stieltjes distribution function related to the original mapping A. Consider the SVD of the bidiagonal matrix

$$L_k = P_k \Theta_k Q_k^T,$$

$$P_k = [p_1^{(k)}, \dots, p_k^{(k)}], \quad Q_k = [q_1^{(k)}, \dots, q_k^{(k)}], \quad \Theta_k = \text{diag}(\theta_1^{(k)}, \dots, \theta_n^{(k)}),$$
$$0 < \theta_1^{(k)} < \dots < \theta_k^{(k)}.$$

The weight $|(p_1^{(k)}, e_1)|^2$ of the approximate distribution function corresponding to the smallest $(\theta_1^{(k)})^2$ is strictly decreasing. At the so called noise revealing iteration, it sharply starts to (almost) stagnate on the level close to the squared noise level δ_{noise}^2 .

Square roots of the weights (left), approximation of $\omega(\lambda)$ (right):

Outline

- 1. Problem formulation
- 2. Propagation of noise in the Golub-Kahan bidiagonalization
- 3. Numerical illustration

Image deblurring problem, image size 324×470 pixels, problem dimension n = 152280, the exact solution (left) and the noisy right-hand side (right), $\delta_{noise} = 3 \times 10^{-3}$.

x^{exact}

Square roots of the weights $|(p_1^{(k)}, e_1)|^2$, k = 1, 2, ... (top) and error history of LSQR solutions (bottom):

The best LSQR reconstruction (left), x_{41}^{LSQR} , and the corresponding componentwise error (right). GK without any reorthogonalization!

LSQR reconstruction with minimal error, x_{41}^{LSQR}

Denoising, problem SHAW(400), maximal amplification factor

Denoising?

Subtraction of the approximate noise from the data leads to the remaining much smoother "transformed noise"

Main message :

Whenever you see a blurred elephant which is a bit too noisy, the best thing is to apply, as quickly as possible, the GK iterative bidiagonalization.

References

- Golub, Kahan: *Calculating the singular values and pseudoinverse of a matrix*, SIAM J. B2, 1965.
- Hansen: *Rank-deficient and discrete ill-posed problems*, SIAM Monographs Math. Modeling Comp., 1998.
- Hansen, Kilmer, Kjeldsen: *Exploiting residual information in the parameter choice for discrete ill-posed problems*, BIT, 2006.
- Meurant, Strakoš: The Lanczos and CG algorithms in finite precision arithmetic, Acta Numerica, 2006.
- Hnětynková, Strakoš: Lanczos tridiag. and core problem, LAA, 2007.
- Hnětynková, Plešinger, Strakoš: *The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level*, BIT, 2009.
- Michenková: *Regularization techniques based on the least squares method*, diploma thesis, MFF UK, 2013.
- Liesen, Strakoš: *Krylov Subspace Methods, Principles and Analysis.* Oxford University Press, 2013.

• ...

Thank you for your kind attention!