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Six tons large real world ill-posed problem:

2



Solving large scale discrete ill-posed problems is frequently based upon

orthogonal projections-based model reduction using Krylov sub-

spaces, see, e.g., hybrid methods. This can be viewed as

approximation of a Riemann-Stieltjes distribution function

via matching moments.
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Outline

1. Problem formulation

2. Propagation of noise in the Golub-Kahan iterative bidiagonaliza-

tion

3. Numerical illustration
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The underlying problem is a linear algebraic system

Ax ≈ b

which can arise, e.g., in discretization of a Fredholm integral equation

of the 1st kind

b(s)exact =

∫

K(s, t) x(t) dt ≡ A x(t).

The right-hand side b is contaminated by noise

b = bexact + bnoise , δnoise ≡
‖bnoise‖

‖bexact‖
≪ 1 .

The goal is to approximate

xexact ≡ A† bexact.
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Singular value decomposition in discrete ill-posed problems
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→ ≈ 0 .
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Properties (assumptions):

• matrices A, AT , AAT have a smoothing property;

• left singular vectors uj of A represent increasing frequencies

as j increases;

• the system A xexact = bexact satisfies the discrete Picard con-

dition.

Discrete Picard condition (DPC):

On average, the components |(bexact, uj)| of the true right-hand

side bexact in the left singular subspaces of A decay faster than

the singular values σj of A, j = 1, . . . , n .
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Left singular vectors of A represent a basis with increasing fre-

quencies; reshaped right singular vectors of A (singular images) for

the Gaussian blur
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Using the SVD the solution of Ax = b can be written as

x = A−1b = V Σ−1UT b =
∑N

j=1

uT
j b

σj
vj.

Recall that σ1 ≥ σ2 ≥ . . . ≥ σN and the exact components and the

noise components behave differently,

x =
∑N

j=1

uT
j bexact

σj
vj +

∑N

j=1

uT
j bnoise

σj
vj .
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Outline

1. Problem formulation

2. Propagation of noise in the Golub-Kahan bidiagonalization

3. Numerical illustration
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Krylov subspace methods are projection methods. Golub-Kahan

iterative bidiagonalization (GK) of A :

Given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for j = 1,2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 .

Sk = [s1, . . . , sk] , Wk = [w1, . . . , wk] , ST
k AWk ≡ Lk , where Lk

is lower bidiagonal, Sk and Wk have orthonormal columns.

GK starts with the normalized noisy right-hand side s1 = b / ‖b‖ .

Consequently, vectors sj contain information about the noise. Can

this information be used to estimate the noise level?
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Components of several bidiagonalization vectors sj

computed via GK with double reorthogonalization:
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The first 80 spectral coefficients of the vectors sj

in the basis of the left singular vectors uj of A:
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Noise is amplified with the ratio αk/βk+1 :

GK for the spectral components:

α1 (V Tw1) = Σ(UTs1) ,

β2 (UTs2) = Σ(V Tw1) − α1 (UTs1) ,

and for k = 2,3, . . .

αk(V
Twk) = Σ(UTsk) − βk(V

Twk−1) ,

βk+1(U
Tsk+1) = Σ(V Twk) − αk(U

Tsk) .
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Since the dominance in Σ(UT sk) and (V Twk−1) is shifted by one

component, in αk (V Twk) = Σ(UTsk) − βk (V Twk−1) one can not
expect a significant cancelation, and therefore

αk ≈ βk .

Whereas Σ(V Twk) and (UT sk) do exhibit the dominance in the di-
rection of the same components. If this dominance is strong enough,

then the required orthogonality of sk+1 and sk in

βk+1 (UTsk+1) = Σ(V Twk) − αk (UT sk)

can not be achieved without a significant cancelation, and one can
expect

βk+1 ≪ αk .

16



Noise level estimation :

GK is closely related to the Lanczos tridiagonalization of the sym-

metric matrix A AT with the starting vector s1 = b / β1.

Spectral properties of

Tk ≡ Lk LT
k =















α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . . . . . αk−1 βk

αk−1 βk α2
k + β2

k















determine an approximation of the Riemann-Stieltjes distribution func-

tion related to the original mapping A.
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Consider the SVD of the bidiagonal matrix

Lk = Pk Θk Qk
T ,

Pk = [p
(k)
1 , . . . , p

(k)
k ] , Qk = [q

(k)
1 , . . . , q

(k)
k ] , Θk = diag (θ

(k)
1 , . . . , θ

(k)
n ) ,

0 < θ
(k)
1 < . . . < θ

(k)
k .

The weight |(p
(k)
1 , e1)|

2 of the approximate distribution function cor-

responding to the smallest (θ
(k)
1 )2 is strictly decreasing. At the so

called noise revealing iteration, it sharply starts to (almost) stagnate

on the level close to the squared noise level δ2noise.
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Square roots of the weights (left), approximation of ω(λ) (right):
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Outline

1. Problem formulation

2. Propagation of noise in the Golub-Kahan bidiagonalization

3. Numerical illustration
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Image deblurring problem, image size 324 × 470 pixels,

problem dimension n = 152280, the exact solution (left) and

the noisy right-hand side (right), δnoise = 3 × 10−3.

xexact bexact + bnoise
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Square roots of the weights |(p
(k)
1 , e1)|

2, k = 1, 2, . . . (top)

and error history of LSQR solutions (bottom):
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The best LSQR reconstruction (left), xLSQR
41 ,

and the corresponding componentwise error (right).

GK without any reorthogonalization!

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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Denoising, problem SHAW(400), maximal amplification factor
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Denoising?
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Subtraction of the approximate noise from the data leads to

the remaining much smoother “transformed noise”
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Main message :

Whenever you see a blurred elephant which is a bit too noisy,

the best thing is to apply, as quickly as possible,

the GK iterative bidiagonalization.
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Thank you for your kind attention!
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